-
98浏览
-
0点赞
-
0收藏
-
1分享
-
1下载
-
0评论
-
引用
期刊论文
基于社会群体搜索算法的机器人路径规划
计算机研究与发展,2013,50(12):2543-2553 | 2013年12月15日
机器人学是现在及未来科技发展的重点,路径规划是机器人学中的一个重要课题.生物界一些群居动物有严格的等级制度和职责分工,受社会群居动物行为启发,提出社会群体搜索算法(social group search algorithm, sgso).社会群体搜索算法对群体的分类及信息反馈机制——领导-追随机制的制定,降低了早熟的概率,交叉变异和淘汰机制的引入增加了搜索范围,减少了陷入局部最优的可能.同时,对提出的社会群体搜索算法进行了分析,从理论上证明了算法的收敛性;将社会群体搜索算法应用于机器人路径规划进行仿真,从实验中验证了算法的有效性,并与遗传算法和粒子群算法比较,进一步证明了社会群体搜索算法在机器人路径规划问题中的有效性和高效性.
-
问答
暂无问题,成为第一个提问者
【免责声明】以下全部内容由[冯翔]上传于[2020年11月26日 15时48分18秒],全讯担保网的版权归原创者所有。本文仅代表作者本人观点,与本网站无关。本网站对文中陈述、观点判断保持中立,不对所包含内容的准确性、可靠性或完整性提供任何明示或暗示的保证。请读者仅作参考,并请自行承担全部责任。
本学者其他成果
同领域成果