基于哈里斯鹰优化器与支持向量回归的农村用电量预测方法研究
首发时间:2019-12-26
摘要:农村在经济发展中扮演着越来越重要的角色,农村用电量需求也越来越大,农村用电量预测能为管理者提供决策支持,其重要性变得十分突出。本文搜集国家统计局1999-2018年中国大陆各省市的农村用电量面板数据,组成农村用电量样本,划分样本以形成训练组与测试组。随机初始化ε型支持向量回归的设置参数,利用ε型支持向量回归对训练组数据进行训练并生成多个农村用电量预测模型;基于模型,对测试组进行预测并得到多个预测精度值,选取当代最优农村用电量预测模型及优化ε型支持向量回归参数组,运用哈里斯鹰优化器更新ε型支持向量回归参数组,利用更新后的参数组再次生成多个农村用电量预测模型,循环上述步骤,直至满足截止条件,得到全局最优农村用电量预测模型,用该模型可解决新的农村用电量预测问题。实验验证了该方法的可行性和预测性能。
关键词:
for information in english, please click here
research on rural electricity consumption prediction based on harris hawk optimizer and support vector regression
abstract:rural areas play an increasingly important role in economic development, and the demand for rural power consumption is also growing. rural power consumption prediction can provide decision support for managers, and its importance has become very prominent. this paper collects the data of rural power consumption panel of china\'s mainland provinces and cities from 1999 to 2018 from the national bureau of statistics, and forms rural power consumption samples, which are divided into training groups and test groups. randomly initialize the parameters of ε-support vector regression, use ε-support vector regression to train the training group data and generate multiple rural power consumption prediction models; based on the model, predict the test group and get multiple prediction accuracy values, select the optimal rural power consumption prediction model and the optimized ε- support vector regression parameter group, and use harris hawk optimizer to update the ε-support vector regression parameter group, use the updated parameter group to generate multiple rural power consumption prediction models again, cycle the above steps until the cut-off conditions are met, and get the global optimal rural power consumption prediction model, which can solve the new rural power consumption prediction problem. the feasibility and prediction performance of this method are verified by experiments.
keywords:
基金:
论文图表:
引用
导出参考文献
no.****
同行评议
勘误表
基于哈里斯鹰优化器与支持向量回归的农村用电量预测方法研究
评论
全部评论0/1000